

Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

Presented by: Matthew R. Bolcar **NASA Goddard Space Flight Center**

ATLAST Technology Development Team:

M. R. Bolcar, K. Balasubramanian, M. Clampin, J. Crooke, L. Feinberg, M. Postman, M. Quijada, B. J. Rauscher, D. Redding, S. Shaklan, H. P. Stahl, C. Stahle, H. Thronson

What is ATLAST?

- Mission concept study for a large UV-Optical-Infrared space telescope ("LUVOIR")
- Multiple engineering reference designs being explored by a multi-institutional team
 - See: N. Rioux, "A future large-aperture UVOIR space observatory: reference designs", paper 9602-4
- Similar in scope to AURA's High Definition Space Telescope (HDST)

What is ATLAST?

- "ATLAST", "LUVOIR", "HDST" are all mostly interchangeable
- LUVOIR: defined in NASA Astrophysics 30-year roadmap
 - Architecture is non-specific
- **HDST:** see: From Cosmic Birth to Living Earths
 Tuesday, Aug. 11, 8:00 pm 10:00 pm Marriot Marquis, Marina E
 - Advocates for a large segmented aperture
- ATLAST: multiple architectures being considered
 - Has engineering reference designs for segmented and monolithic systems
- All have very similar science goals

ATLAST Science

- Detect and characterize a statistically significant population of habitable exoplanets
 - Discover dozens of exoEarths
 - Look for, and potentially confirm, presence of life
 - Observe general planet populations for comparative studies
- Perform a broad array of UVOIR general astrophysics:
 - Galaxy, star, and planet formation
 - Flow of material between galaxies
 - Observations within our own solar system

 ATLAST's science portfolio is very similar to that outlined in AURA's From Cosmic Birth to Living Earths report

Top-Level System Requirements

Parameter		Requirement Stretch Goal		Traceability	
Primary Mirror Aperture		≥ 8 meters	12 meters	Resolution, Sensitivity, Exoplanet Yield	
Telescope Temperature		273 K – 293 K	-	Complexity, Fabrication, Integration & Test, Contamination, IR Sensitivity	
	UV	100 nm– 300 nm	90 nm – 300 nm	-	
Wavelength Coverage	Visible	300 nm – 950 nm	-	-	
	NIR	950 nm – 1.8 μm	950 nm – 2.5 μm	-	
	MIR	Sensitivity to 5.0 μm	-	Transit Spectroscopy	
Image	UV	< 0.20 arcsec at 150 nm	-	-	
Quality	Vis/NIR/MIR	Diffraction-limited at 500 nm	on-limited at 500 nm -		
Str	ay Light	Zodi-limited between 400 nm – 1.8 μm	Zodi-limited between 200 nm – 2.5 μm	Exoplanet Imaging & Spectroscopy SNR	
Wavefront Error Stability		< 10 pm RMS uncorrected system WFE per control step	-	Starlight Suppression via Internal Coronagraph	
Pointing	Spacecraft	≤ 1 milli-arcsec	-	-	
Follitting	Coronagraph	< 0.4 milli-arcsec	-	-	

Technology Development for ATLAST

- Our team identified 5 key technology areas to enable the ATLAST mission:
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large aperture systems
 - Detectors
 - Mirror Coatings

Assumptions

- Assume a new mission start circa 2024
 - Technologies must be TRL 5 by this time
 - Technology development plan must be credible in time for 2020 Decadal Survey
- Assume flexibility with respect to ATLAST architecture
 - Explore multiple solutions at this early stage of development
 - i.e. develop for both monolithic and segmented apertures, develop both internal coronagraphs and starshades, etc.
- Adopt a conservative approach in identifying gaps
 - This a systems-level problem: every technology impacts every other
 - Requires detailed integrated design cycles
 - For now, assume conservatively and refine as technologies develop and modeling is performed

Technologies

Internal Coronagraph

Instrument internal to the observatory that suppresses the

on-axis starlight

 Nimble: allows the observation of many planetary systems in a fixed mission lifetime

 Dozens of exoEarths predicted with reasonable assumptions¹

- Impose stringent wavefront stability requirements on the telescope
- Limited inner-working angle at long wavelengths
 - Difficult to observe some biosignature spectral features in the NIR

iiiteiiiai
Coronagrapl
Broadband High-Contract

Coronagraph

includes Wavefront Sensing &

Control (WFSC)

Deformable Mirrors

Autonomous Onboard

Computation

Starlight Suppression

 $_{9602\text{--}8}$ Image Processing

Internal

Parameter

Raw Contrast

IWA

OWA

Bandpass

Aperture

Actuator count

Environmental

Electronics

Bandwidth

Electronics

PSF Calibration

WFSC

Need

1×10⁻¹⁰ (detect)

3.6 λ /D (detect)

10-20% (instantaneous)

400 nm - 1.8 μm (total)

 $200 \text{ nm} - 2.5 \mu \text{m} \text{ (goal)}$

Obscured, segmented

128×128 (continuous)

>16 bits, high-throughput

Closed-loop > a few Hz

Rad. hard, >100 GFLOPS/W

Factor of 50-100× improvement

>3000 (segmented)

Robust, rad. hard

in contrast

Fast, low-order, at stellar photon

 $2.0 \lambda/D$ (char.)

 $\sim 64 \, \lambda/D$

rates

5×10⁻¹⁰ (char.)

Current

TRL

3

3

3

3

10

Capability

3.2×10⁻¹⁰

 $3 \lambda/D$

 $16 \lambda/D$

10%

Unobscured

source

Slow, tip/tilt, bright lab

64×64 (continuous)

<200 (segmented)

Testing underway

~16 bit, dense cabling

Human-in-the-loop

<20 GFLOPS/W

25× demonstrated

30× goal for WFIRST

Starshade

Separate spacecraft that flies in formation with telescope to

block incoming starlight

 Not nimble: long slew times between observations limits the exoplanet yield for a fixed mission lifetime

- No special requirements imposed on telescope
- Inner working angle is independent of wavelength or telescope diameter

Starshade	Parameter	Need	Capability	Current TRL	
Starshade Construction and Deployment	-	Petal and central truss design consistent with an 80-m class starshade Demonstrate manufacturing and deployment tolerances	Demonstrated prototype petal for 40-m class starshade Demonstrated deployment tolerances with a 12-m Astromesh antenna with 4 petals	3	
	Edge radius	≤ 1 μm	≥ 10 µm		
Optical Edges	Reflectivity	≤ 10%	-	3	
	Stowed radius	≤ 1.5 m	-		
	Lateral sensing error	≤ 20 cm	-		
Formation Flight	Peak-to-peak control	< 1 m	-	3	
	Centroid estimation	≤ 0.3% of optical resolution	≥ 1%		
Contrast Performance Demonstration and Model Validation	-	1×10 ⁻¹⁰ broadband contrast at Fresnel numbers ≤ 50	3×10 ⁻¹⁰ contrast, excluding petal edges, narrowband, at Fresnel number of ~500	3	

Propulsion & refueling to

years of a 5-year mission

enable > 500 slews during 3

Requires study; robotic

refueling appears feasible

3

12

Starshade Propulsion &

Refueling

Ultra-stable Large Aperture Telescopes

- Provide wavefront stability for an internal coronagraph
- Incorporates entire optical system:
 - Mirrors
 - Structure
 - Thermal control system
 - Vibration isolation system
 - Metrology & Actuators

Ultra-stable Large Aperture Telescopes	Parameter	Need	Capability	Current TRL	
	Areal Density	< 36 kg/m² (Delta IVH) < 500 kg/m² (SLS)	~12 kg/m² (SiC) ~35 kg/m² (ULE) ~70 kg/m² (JWST)		
	Areal Cost	< \$2 M/m ²	~\$6 M/m² (JWST)		
Mirrors	Areal Production Rate	30-50 m²/year	~4 m²/year (JWST) ~1 m²/year (HST) ~100-300 m²/year planned by TMT but not yet demonstrated	4	
	Moisture Expansion	Zero after initial moisture release	Continuous moisture release		
Stable Structures	Lurch	< 10 pm / wavefront control step	Micro-lurch at joint interfaces	3	
	Metrology	High-speed picometer metrology to validate performance	Nanometer speckle interferometry on JWST		
Thermal Stability	Material Stability	~10 nm/K	~100 nm/K	3	
Disturbance Isolation System	End-to-end Attenuation	140 dB at frequencies > 20 Hz	80 dB at frequencies > 40 Hz (JWST passive isolator only)	4	

~1 pm

~1 pm

~1 nm

~5 nm

14

Sensing Accuracy

Control Accuracy

Metrology & Actuators 9602-8

Detectors

Need improvements to enable and enhance exoplanet science

 Better UV science enabled by improvements in sensitivity and format

• See:

B. Rauscher, "Detector requirements for coronagraphic biosignature characterization", paper 9602-12

Detectors	Parameter	Need	Capability	Current TRL
	Bandwidth	400 nm – 1.8 μm (2.5 μm goal)	EMCCD is promising, need	
	Read Noise	<< 1 e ⁻	radhard testing, has hard	
Visible-NIR Single-photon	Dark Current	< 0.001 e ⁻ /pix/s	cutoff at 1.1 µm; HgCdTe APDs good for NIR	3-5
Detectors for Enabling Exoplanet Science	Spurious Count Rate	Small compared to dark current	but need better dark current; MKID & TES meet requirements but require	5-5
	Quantum Eff.	> 80% over bandwidth	cryo ops.	
	Format	> 2k × 2k		
	Bandwidth	200 nm – 400 nm		
	Read Noise	<< 1 e ⁻	EBCMOS and MCP detectors	
UV Single-photon Detectors	Dark Current	< 0.001 e ⁻ /pix/s	need better quantum eff., and improvements in	
for Enhanced Exoplanet Science	Spurious Count Rate	Small compared to dark current	lifetime; MKID & TES detectors also	2-4
	Quantum Eff.	> 50% over bandwidth	apply here	
	Format	> 2k × 2k		
	Bandwidth	90 nm – 300 nm	Same as above;	
Large-Format High-Sensitivity UV Detectors for General	Read Noise	< 5 e⁻	δ-doped EMCCD also a	4
Astrophysics	Quantum Eff.	> 70%	candidate, but needs rad hard testing and lower clock- induced charge	
9602-8	Format > 2k × 2k		doca charge	16

Mirror Coatings

Needed for Primary & Secondary mirror surfaces

Broadband performance from UV to NIR

Compatible with high-contrast imaging by internal coronagraph

• See:

K. Balasubramanian, et al., "Coatings for UVOIR telescope mirrors", paper 9602-19

Mirror Coatings	
Reflectivity	
Uniformity	

Polarization

Durability

9602-8

Parameter

90 nm - 120 nm

120 nm - 300 nm

90 nm - 120 nm

120 nm - 250 nm

> 300 nm

> 250 nm

≥ 90 nm

Need

> 70%

> 90%

> 90%

< 1%

< 1%

< 1%

< 1%

minimum)

Stable performance over

mission lifetime (10 years

Current

TRL

2

3

5

2

3

4

2

4

18

Capability

< 50%

80%

> 90%

TBD

> 2%

1-2%

study

Not yet assessed; requires

Stable performance, but with limited starting reflectivity

below 200 nm

Development Activities

FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 | FY23 | FY24 | Leverage WFIRST/AFTA

Develop top

Downselect top 2 candidates

TRL 5

FY25 | FY26

Internal Coronagraph

Investment **Fund Development of** new promising techniques

formation flight, edge techs.

Close on model validation tests

Continue investments in truss.

3-4 candidates to TRL 4

2020 Decadal

Review

Demonstrate deployment of 80-m

Incorporate DM and WFSC technology

class truss & petals

Engage human/robotic servicing

community

Downselect promising

technologies to focus resources

Select flight primary

and backup **Develop to TRL 6 Environmental testing**

of structure, blankets,

edges, etc.

Subscale stability

demonstration testbed

integrates all

components

Final environmental and

radiation qualification

of selected technologies

Full scale coating demonstration on 1.5-m

class mirror; Scaleable to larger mirrors in event monolithic architecture is baselined

Starshade

Ultra-stable Large Aperture Telescopes

Detectors

Mirror Coatings

Individually develop reflectivity, uniformity,

polarization, durability performance on small scale

samples

Conclusions

- A multi-institutional team, studying a large UV-Optical-IR telescope with two science goals:
 - Detect and characterize habitable exoplanets
 - Broad array of general astrophysical observations
- Identified 5 key technologies to enable ATLAST
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large-aperture telescopes
 - Detectors
 - Mirror Coatings
- Recommended actions for developing technologies to TRL 5 in time for a new mission start in 2024

Questions?

BACKUP

Historical Context

• 2009

Multi-institutional team studies ATLAST concept; proposed to 2010
 Decadal Survey

• 2010

 Decadal Committee recommends "a New Worlds Technology Development Program" as the highest priority medium-scale activity

• 2014

 NASA Astrophysics 30-year Roadmap recommends a large UV-Optical-Infrared (LUVOIR) telescope in the "Formative Era"

2015

 AURA releases From Cosmic Birth to Living Earths; recommends the High Definition Space Telescope (HDST) as a general astrophysics observatory with the "killer app" of detecting and characterizing habitable exoplanets

Early to mid-2016

 NASA Astrophysics Division initiates Science and Technology Definition Teams (STDTs) to perform detailed mission concept studies in preparation of the 2020 Decadal Survey: LUVOIR is one of four missions to be studied

ATLAST Segmented Architecture: At a Glance

Notional Instrument Requirements

Science Instrument	Parameter	Requirement	Stretch Goal	
	Wavelength Range	100 nm – 300 nm	90 nm – 300 nm	
UV Multi-Object	Field-of-View	1 – 2 arcmin	-	
Spectrograph	Spectral Resolution	R = 20,000 – 300,000 (selectable)	-	
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm	
Visible-NIR	Field-of-View	4 – 8 arcmin	-	
Wide-field Imager	Image Resolution	Nyquist sampled at 500 nm	-	
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm	
Visible-NIR Integral	Field-of-View	4 – 8 arcmin	-	
Field Spectrograph	Spectral Resolution	R = 100 – 10,000 (selectable)	-	
	Wavelength Range	Sensitivity to 5 μm	-	
MIR Transit Spectrograph	Field-of-View	TBD	-	
opeon og. up.:	Spectral Resolution	R = 200	-	
	Wavelength Range	400 nm – 1.8 μm	200 nm – 2.5 μm	
Charlish Communication	Raw Contrast	1×10 ⁻¹⁰	-	
Starlight Suppression System	Contrast Stability	1×10 ⁻¹¹ over integration	-	
System	Inner-working angle	36 milli-arcsec @ 1 μm		
	Outer-working angle	> 0.5 arcsec @ 1 μm	-	
Multi Dand Evanland	Field-of-View	~0.5 arcsec	-	
Multi-Band Exoplanet Imager	Resolution	Nyquist sampled at 500 nm	-	
Evenlenet Constructor	Field-of-View	~0.5 arcsec	-	
Exoplanet Spectrograph	Resolution	R = 70 – 500 (selectable)	-	

Internal Coronagraph

FY16 Multi-institution study of new &

existing

FY17 | FY18 |

FY25

FY26

Broadband High-Contrast Coronagraph

Control (WFSC)

Deformable Mirrors

Autonomous Onboard

Computation

Starlight Suppression

 $_{9602\text{--}8}$ Image Processing

includes Wavefront Sensing &

coronagraph techniques Leverage WFIRST/AFTA investment in WFSC

Development of top 3-4 candidates to TRL 4

2020 Decadal

Review

FY19 |

FY20

Select

Mirror

candidates; **Develop to TRL 5**

Downselect to ~2

FY21 | FY22 |

Select mission primary and backup; **Develop to TRL 6**

Environmental qualification

TRL 5

FY24

FY23

Develop flight electronics & software Arch. **Leverage WFIRST/AFTA investment Development of high-speed, low-power** Implement WFSC software on hardware; processing architectures perform radiation & environmental testing; Support coronagraph testbed ops. **Leverage WFIRST/AFTA investment Extend PSF calibration techniques to gain factors of** 50-100× in contrast improvement

Industry Engagement; Improve actuator counts, yield, electronics precision

Leverage WFIRST/

AFTA investment

Detectors	FY16	FY17	FY18		pecadal riew FY20	FY21	FY22	FY23	FY24	FY25	FY26
Visible-NIR Single-photon Detectors for Enabling Exoplanet Science	pursu	ing EMC	elected te CD, HgCdT ng techs, e	e,		elect to foesources	ocus	Final	developm		ected
UV Single-photon Detectors for Enhanced Exoplanet Science	Collaboration between NASA, Industry, Universities Pursue parallel detector technologies (EB-CMOS, MCP, etc.) develop to TRL										tor &
Large-Format High-Sensitivity UV Detectors for General Astrophysics	Radiation testing of EMCCDs first priority Recommend short-list of candidates to Decadal					Fl	light-quali	fy; Develo	pp to TRL	6	29

Mirror	2020 Decadal Review TRL 5										
Coatings	FY16	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26
Reflectivity		-	quipment ces and A ilities.	\ \	for	s develop promisingues such a	g				
Uniformity	Develop automated instruments, test methods, and analyses. Uniformity studies with a large number of samples							TRL 5 & 6 demonstrations of			of
Polarization	Theore	tical Anal of Requi	ysis & Est	imate	measure	sed, pract ements to velopmer	guide		ing on 1.5	-m mirror	1
Durability 9602-8	Det	ailed test	s & analy	sis	deve	scale tests elopment ected coat	of				30